Technical Report No, 106

ANISOTROPIC RELAXATION FUNCTIONS AND STRENGTH
OF ORIENTED SOLIDS

S . R. Moghe and C, C, Hsiao
University of Minnesota, Minneapolis, Minnesota

March 1966

NASA Grant NGR-24-005-070




3

Anisotropic Relaxation Functions and Strength

of Oriented Solids*

S. R. Moghe and C. C, Hsiao
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Mechanical properties of a solid are formulated in
terms of microscopic behavior as a result of deformation
and orientation. The relaxation behavior of the oriented
solld 1s obtalned by considering statistically the visco-
elastic micro behaviors. It is found that various aniso-
tropic relaxation functions can be expressed as a single
time-dependent function under certain conditions. The
time-dependent macroscopic fracture strength is also
analyzed for the oriented system using known results for
a completely oriented system,

*Supported in part by the National Aeronautics and Space
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INTRODUCTION

In this report a phenomenological theory of the
time dependent characteristics of anisotropic relaxation
functions as well as strength of oriented viscoelastic
media is presented. In obtaining the relaxation functions
viscoelastic behavior for microscoplic components in the
media has been considered., However, in formulating the
conditions of the time-dependent fracture strength, viscous
behavior was not taken into account as fracture is un-
likely to occur when flow deformation exists, Thus the
analysis applies to elastic medium, but the nature of
molecular orientation effect resulted in from large flow
deformation was included. Essentially, attempts are made
to extend an earlier theory investigated during the last
few years.l—4 The basic mathematical model 1s a matrix
of oriented linear elastic elements embedded in an
arbitrary domain, The elements representing molecular
forces constitute an ideal medium which has been found
quite useful in predicting macrobehavior including
ultimate strength under simple external loading conditions.
Assuming the homogeneity of the medium, the macroscoplc
properties can be deduced through the analysis of the
state of stress in a small neighborhood of a point
attached with microscopic constituents represented by
deformable vectors. In spherical coordinates (©,¢)

the stress tensor at a point may be expressed as follows:l’

oy = [p(6,0,2)2(8,6,8)9(0,0)5, 5,0 (1)

distribution
function of orientation associated with a state of strain g,
£f(8,¢,t) is the fraction of elements that are available at
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the time of consideration. ¥(8,¢) is the stress in the
axial direction of an element in the matrix, Sy - and Sj
are unit vectors whose components in spherical coordinates
are (sin@cos¢, sin®sing, cos®) and do is the infinitesimal
so0lid angle.

For small deformations the complete matrix will have

little or no orientation effect., However, when deformations

become appreciable, the orientation of microelements must
be taken into consideration if significant result is to
be obtained. This can be accomplished through the use of
p(@,0,€) in terms of a state of strain e. Depending upon
the nature of molecular constitution, two extreme cases
or their combinations may be considered. For randomly
oriented elements, if € is a simple homogeneous large
strain:l

(L+e)°
[00529 + 0&6)3

8,0, = 0
P( E) Sin29]5/2 P( )

where p(o) = 1/4m is a constant representing a random
distribution density function of orientation. In the
case if the elements are connected by flexible joints,

then:e*

a
p(8,¢,€) = p(0)
[cos28/2 + asin28/2]2

where @ is associated with € as follows:
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The quantity f(0,¢,t) is derivable from the theory
of absolute reaction rate as
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where
K = e_U/RT - Wl’(@;d’,t)
r r (6)

K’b = (J)be_U/RT + f37//(@,¢,t)

and

are respectively the rate coefficients for reformation and
breakage of elements,. wr, wb, Y, B, U and R are material
constants and T is the absolute temperature.




MACROSCOPIC REILAXATION FUNCTIONS

In determining macroscopic relaxation functions,
one way 1s to extend the formulation (1) through the
consideration of the viscoelastic behavior of the in-
dividual micro-elements. If a one-dimensional constitutive
equation of individual elements is considered, the stress
in general 1s expressible as a functional of deformation
history subJject to the restrictions imposed upon by the
principles of objectivity. Under suitable restrictions

and for small finite deformations e, ¥(t) can be expressed

as t

Ww=éﬁﬁ-TﬁhMT

t t
+£\£F(t-11, £-7,)8 (7, )é (7, )ar dr, (7)
_‘

where the kernel functions E, F, etc. depend upon the
microscopic relaxation behavior of the elements. If the
deformation e is small, the first integral in (7) alone
will be sufficient for a good representation of the
viscoelastic behavior,

For a smooth function e(t) it can be shown that ¥(t)
will also be a smooth function, Then an inspection of (5)
in view of (7) will show that f(t) is also a smooth
function of time for a given initial value fo. Therefore,
starting with a number of unbroken elements fo the traction
force contribution by these elements at any time t will
depend upon the entire history of f(t) during the time
interval (O, t) in view of (5) and (7). This contribution
will increase or decrease according to the number of
unbroken elements increases or decreases., Any reformation

or breakage of the elements in an interval (0, T) smaller
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than (0, t) will affect the traction force contribution
at time t, Then through the application of superposition
principle we can modify (1) as

T
015 (1) = [ 0(0.9,0)3,5 [ £(8,0,5,7)a¥(8,0,7)a0 (8)

Assuming ¥(t) to be a differentiable function, we can
write (8) as

t
o, . (%) = _{/j’fp(@,¢,E)Sisjf(@,cb,t,T)M%—-ﬁ’T—)dew (9)
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provided the integrals exist, If we assume now that any
reformation or breakage of elements in the past will
influence,in a consistent manner, the traction force

contribution or stress tensor at time t then (S} can further
be modified as

t
- oY (6,¢,7)
cij(t) —\K:sisjl:p(@,¢,s)f(6,¢,t - T)————5?~——d1dm (10)
Substituting for ¥(t) from (7) into (10) we obtain

cij(t) =‘/ﬁsisjp(@,¢,a)smsn
w

t T
da [ .
. f £(®,¢,t - T)a’—TJE(T - x)em(x)dm«rdw (11)
Yo o)
& % 6 & & o @ @
Simplifying further we get
t
cij(t) =‘l;p(@,¢,e)sisjsmsn [L}(®,¢,t - 1)E(o)ep,(T)dt
¢ ¢
+f £(8,¢,t - T)/ E(tr - ?\)émn(?\)d?\d’r:]dw (12)
(o} Yo
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For simplicity, here, the higher order terms are not shown,




Through the use of Laplace transform it can be shown that

for infinitesimal deformations,
t
Uij(t) =\£:Cijmn(t - T)emn(T)dT

where t

Cijmn(t) =\A;p(e,¢,e)sisjsmsnké\f(8,¢,t - 7)E(71)dTdw

which can be computed. Here Ci,mn(t) is a symmetrical
,.(t). Also, the com-

mnij

parison with the transversely isotropic elastic solid

as reported earlierl’3 indicates that there are only

three independent time dependent functions involved in

tensor defined as Cijmn(t) = C

(14). In general for a transversely isotropic solid,
which can be resulted in from a uniaxial orientation,
there are five independent functions Cijmn(t)‘ The
absence of two of these functions in the present case
can be attributed to the limitation on the simple
model for which the Cauchy relations are identically
satisfied. A more general model may remove this limi-
tation.

In order to determine Cijmn(t) from (14) it is
necessary to solve (5) which by no means is an easy
task. Only numerical method of solutions of (5) and
(14) will produce some concrete results. However,
in some cases as when f in (5) may be a slowly varying
function, i.e. £ 2 0 the evaluation of (14) is some-
what easier. Under a very restricted assumption that
£(8,9,t) = £(t), (14) takes a very simple form

£

Cijmn(t) =\[;p(@,¢,e)sisjsmsndwjgf(t - T)E(7)dT

where only one time dependent function is involved.

In this case, referring to a spherical coordinate
system and locating the direction of any representative
element by angles © and ¢ the joint probability distri-
bution function is

(13)

(14)

(15)
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Finally if p(®,¢,e) is given as in (2) then

Cyqy17(t) = Coppplt) = %p(O)[l - 2P, + F,16(t)

CllEQ(t) =-%01111(t) = %P(O)[l - 2F, + F2]G(t) 3

C11335(t) = Cpopzzlt) = %P(O)[Fl - F lc(t)
03555(t) = P(O)FQG(t)
1 .. -1
where F 5_11_2[1 -(1 - k2)§smk k]
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These results show that if G(t) is determined experimentally
by one type of test, then all the anisotropic functions

are obtainable by multiplying with their corresponding
coefficients. Fig. 1 shows the variation of these coef-
ficients in E127\fO where 1 is length of the elements and

A the number of elements in a unit volume. It is interesting
to observe that if a system like this exists, the anisotropic
relaxation functions behave very much alike. This seems
reasonable as a molecular system is essentially composed

of similar molecular elements. Under load somewhat similar
behavior may be expected.




TIME DEPENDENT MACRO-STRENGTH

Investigations concerned with the time dependent
fracture of completely oriented solids under simple
loading conditions have been reported.4’5 Analytical
considerations for partially oriented systems under
general loads are not yet available. The time dependent
fracture of any medium can be studied by solving (5)
and (12) together with a fracture criterion. Here we
are looking for a relation between time-to-fracture tb
and applied stresses Gij(t)' In dealing with such a
problem, the large flow deformation is considered to
contribute to the molecular orientation only whereas
the small elastic deformations will govern the fracture
mechanism of the elements and thus the strength of the
solid.

Under moderate and large loading conditions,
consider (1) in the following modified form.

0 5(e,) = [p(0,0,6)2(0,8,)0(6,0, )55 dw (17)

1J o

where, in the absence of reformation processes i.e.

Kf = 0, { satisfies
af _ k1= - PV (18)
at Ky p€
and
_ -U/RT
Qb = mbe

For constant loading Uij = constant, differentiation
of (17) with respect to t gives

oY of
0 =\l;p(®,¢,e)[f5€ + wgg]sisjdw (19)
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Multiply (18) by p(@,¢,e)sisJ¢(®,¢,t) and integrate over
the entire volume then

= df BY
0 —LA;P(9,¢,€)¢(®,¢,t)[ag'+ { fe ]sisjdw (20)

where f is not zero at all times and for any 5, . Using
(19) we can show that this equation is satisfied only if

N _ g yeP¥

3 = (21)

This holds true for any arbitrary element defined by

the spherical coordinates (©,¢). For a fully oriented
medium if every element is oriented along 33-direction

53> then (21) can be
expected to be true for‘the entire homogeneous solid as
the strength behavior of the entire solid is representable
by that of an individual element. Assuming that all the
elements are identical and would break when ¥(8,¢,t) — wb,

then this will serve as an adequate criterion for

under a constant simple tension ©

obtaining the required time-dependent fracture informa-
tion. Of course, other maximum strain criterion or
maximum energy criteria may also be used. If we do not
assume any of those, the natural criterion which results
from the definition of f is that fracture will occur
when f — O,

Now we consider that initially when t = 0, f =1
and ¥ = ¥_ then integrating (21) we get

£, = Q%{Ei(fawb) - E1(-p¥_)] (22)

This is the equation giving the time-to-break for any

individual element along the direction indicated by

(e,¢) for

ny ¥
o

integral of argument x defined by

a4+ 4
a L

t = 0. Ei{(-x) is the exponential

o
(=9
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o0

-Ei(-x) =k/\———-dy (23)
X

From the definition, ¥ (8,¢) = Ee s 8 at t =0 then
o]
substituting into (17) we get

o535 = Ecijmnemn (24)
where '
Cijmn =\£;p(@,¢,e)sisjsmsndw (25)
If we define Bijmn as the inverse of Cijmn such that
i o -1
HBygmoll = 1} Ot mnll (26)
then
Ee = = Bijmn“ij = B4 sin%m (27)
and finally
¥ (8,6) = By, 0 58 (28)
Here bot? gijmn and Bijmn are functions of orientation
3

strain e . Then (22) can be expressed as

)] (29)

t, = é;[Ei(-Bwb) - BL(-BB, 0 55,
which essentially gives tb = tb(cij,si). It is obvious
from (29) that the elements oriented in different
directions initially will break at different times, and
the choice of the time-to-break for the entire solid
becomes very difficult or arbitrary. However, a sta-
tistical average with respect to the distribution
function p(8,¢,e) will hopefully glve a more representative
value to tb' For a continuous distribution of elements,
as in the present case, the average representative time-

to-break Eg may be given by
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Eb =£tb(9:¢)9(9:¢;5)dw/\£ P(@;¢:€)dw

If p(8,0,e) as defined in (2) is considered, then (30)

becomes

= _ (1+¢)°
b \Z; 5 )3

[cos™® + (1 + ¢

sinee]

Substitute (29) in (31), we obtain

— 1
T, - i B ey,

(1 + 8)3

575 tb(e,¢)dm/2w

—\A;El(—BBijmncijsmsn)

For an isotropic solid € = 0, then

where Bijmn(o) = Bijmn c_ o

[00529 + (1 + e)Bsinge]S/2

by = Q%{Ei("ﬁwb) - Ei('ﬁBijmn(o)oiJSmSn))

dw/QW}

Evaluation of the integral (33) will give the required

result.

It may be emphasized that such explicit results

cannot be obtained if the reformation processes are

considered i.e. K_ % 0 in (5).

To obtain some intuition about the results in (32),

let us consider a triaxial state of stress o

11 = °

22 T

Ogz = O (say), and the medium isotropic, then it can be

shown™ that B,

. O
iJjmn

. .88
ij mn
we obtain

T, = gé{Ei(—awb) - E1(-380)]

which has a behavior as shown in Fig, 2.

This 1is

= 30. Substituting into (24)

(30)

(31)

(32)

(33)

(34)
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qualitatively similar to that given earlier4 when
reformation processes are neglected, Equation (34)
enforces a natural limlitation on the maximum value

Um of o since EB cannot be negative. This value cm

is given by setting E£ = 0 in (34) to be wb/S. Similar
results can also be obtained when different possible
loadings and orientations are considered.
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